Combinatorial Subset Difference Public Key Broadcast Encryption Scheme for Secure Multicast
نویسندگان
چکیده
Public key broadcast encryption is a cryptographic method to securely transmit a message from anyone to a group of receivers such that only privileged users can decrypt it. A secure multicast system allows a user to send a message to a dynamically changing group of users. The secure multicast can be realized by the broadcast encryption. In this paper, we propose a novel combinatorial subset difference (CSD) public key broadcast encryption algorithm which allows a generalized subset different representation in which wildcards can be placed at any position. The proposed CSD is applicable to a secure multicast as well as minimizes the header size compared with existing public key broadcast encryption schemes without sacrificing key storage and encryption/decryption performance. Experimental results show that the proposed CSD scheme not only reduces the ciphertext header size by 17% and 31% but also improves encryption performance (per subset) by 6 and 1.3 times, and decryption performance by 10 and 19 times compared with existing efficient subset difference (SD) and interval schemes, respectively. Furthermore, especially for subsets represented in a non-hierarchical manner, the proposed CSD reduces the number of subsets by a factor of 1000 times compared with SD and interval approaches. We prove semantic security of our proposed CSD scheme under l-BDHE assumption without the random oracle model.
منابع مشابه
Design and formal verification of DZMBE+
In this paper, a new broadcast encryption scheme is presented based on threshold secret sharing and secure multiparty computation. This scheme is maintained to be dynamic in that a broadcaster can broadcast a message to any of the dynamic groups of users in the system and it is also fair in the sense that no cheater is able to gain an unfair advantage over other users. Another important feature...
متن کاملAn Optimal Subset Cover for Broadcast Encryption
In broadcast networks, it is often required to encrypt data so that only a privileged set of users with access to the session key can access the data. The standard technique of transferring the session key to each user individually does not scale with the number of users typically found on a network such as cable. This method is not only time-wise inefficient, but also incurs high communication...
متن کاملIdentity-Based Revocation from Subset Difference Methods under Simple Assumptions
Identity-based revocation (IBR) is a specific kind of broadcast encryption that can effectively send a ciphertext to a set of receivers. In IBR, a ciphertext is associated with a set of revoked users instead of a set of receivers and the maximum number of users in the system can be an exponential value in the security parameter. In this paper, we reconsider the general method of Lee, Koo, Lee, ...
متن کاملCommunication Security in Wireless Sensor Networks
A wireless sensor network (WSN) usually consists of a large number of small, lowcost devices that have limited energy supply, computation, memory, and communication capacities. Recently, WSNs have drawn a lot of attention due to their broad applications in both military and civilian domains. Communication security is essential to the success of WSN applications, especially for those mission-cri...
متن کاملEnhanced Outsider-anonymous Broadcast Encryption with Subset Difference Revocation
This paper puts forward an efficient broadcast encryption in public key setting employing ternary tree subset difference method for revocation. It provides outsider anonymity disabling the revoked users from getting any information of message and concealing the set of subscribed users from the revoked users. Our approach utilizes composite order bilinear group setting and exhibits significant i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017